17 research outputs found

    Evolving GANs: When Contradictions Turn into Compliance

    Full text link
    Limited availability of labeled-data makes any supervised learning problem challenging. Alternative learning settings like semi-supervised and universum learning alleviate the dependency on labeled data, but still require a large amount of unlabeled data, which may be unavailable or expensive to acquire. GAN-based synthetic data generation methods have recently shown promise by generating synthetic samples to improve task at hand. However, these samples cannot be used for other purposes. In this paper, we propose a GAN game which provides improved discriminator accuracy under limited data settings, while generating realistic synthetic data. This provides the added advantage that now the generated data can be used for other similar tasks. We provide the theoretical guarantees and empirical results in support of our approach.Comment: Generative Adversarial Networks, Universum Learning, Semi-Supervised Learnin

    Integrating Constraint Satisfaction and Spatial Reasoning

    No full text
    Many problems in AI, including planning, logical reasoning and probabilistic inference, have been shown to reduce to (weighted) constraint satisfaction. While there are a number of approaches for solving such problems, the recent gains in efficiency of the satisfiability approach have made SAT solvers a popular choice. Modern propositional SAT solvers are efficient for a wide variety of problems. However, particularly in the case of spatial reasoning, conversion to propositional SAT can sometimes result in a large number of variables and/or clauses. Moreover, spatial reasoning problems can often be more efficiently solved if the agent is able to exploit the geometric nature of space to make better choices during search and backtracking. The result of these two drawbacks — larger problem sizes and inefficient search — is that even simple spatial constraint problems are often intractable in the SAT approach. In this paper we propose a spatial reasoning system that provides significant performance improvements in constraint satisfaction problems involving spatial predicates. The key to our approach is to integrate a diagrammatic representation with a DPLL-based backtracking algorithm that is specialized for spatial reasoning. The resulting integrated system can be applied to larger and more complex problems than current approaches and can be adopted to improve performance in a variety of problems ranging from planning to probabilistic inferenc
    corecore